
Pipelining RISC-V
with Transaction-Level Verilog

Two College Courses in Digital Logic in Three Hours

Steve Hoover
Founder, Redwood EDA

steve.hoover@redwoodeda.com
Feb. 10, 2018

These slides accompany the webinar at:

https://www.udemy.com/course/1549918

mailto:steve.hoover@redwoodeda.com

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
2

Example RISC-V Block Diagram

3

A
L
U

IMem
Rd

+1

RF
Rd

+

RF
Wr

ld rtn

br. target

ld data

+

Dec

P
C

DMem Rd/Wr

Pipelined RISC-V Block Diagram

4

A
L
U

IMem
Rd

RF
Rd

+

pend. replay PC

reg. byp.

RF
Wr

ld rtn

br. target

ld data

+

Dec

P
C

p
e
n
d

DMem Rd/Wr

+1

ADDI

RISC-V Waterfall Diagram & Hazards

5

P F D R E W PC
(P)

Ftch
(F)

Dec
(D)

Rd
(R)

Exe
(E)

Wr
(W)P F D R E W

P F D R E W
P F D R E W

P F D R E W
P F D R E W

P F D R E W
P F D R E W

P F D R E W

P F D R E W
P F D R E W

P F D R E W

BGT
SUBI
OR
LD
OR

P F D R E W

P F D R E W

Time ->

mispred

r1 pending

replay for r1

bypass r4

MV r4 <- … P F D R E W
ADDI … <- r4
LD r1 <- …
ADD
XOR … <- r1 …
BLT
<LD r1 rslt>
SW
XOR … <- r1 …

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
6

RISC-V IP Challenges
Every CPU core serves a different purpose
● General-purpose computing
● HPC workloads
● Hardware acceleration of X
● Microcontroller for X
● I/O processor
● Etc.

7

Low-Power
1-Stage
FPGA

High-Perf
7-Stage

ASIC

RISC-V IP Challenges
Every implementation is constrained differently
● area
● power
● performance
● test/debug infrastructure
● clock frequency

RTL expresses an implementation.

8

Low-Power
1-Stage
FPGA

High-Perf
7-Stage

ASICRTL is not good for IP!

WARP-V: RISC-V CPU Core Generator

9

“Swiss Cheese” CPU

Config

BrPred = ...
ISA = ...
...

Params

WordWidth = ...
MemSize = …
...

Staging

Fetch = 1
Decode = 2
Execute = 3
...

BPs

Dec Exe WB

TL-Verilog

Verilog

Dec Exe WB

ISAs

WARP-V Code (currently)

In a single 1500-line file (~1.5 wks of coding):
● The uArch model
● The RISC-V ISA logic
● A Mini-CPU ISA (for demonstration and academic use)
● A rudimentary RISC-V assembler
● A tiny sample program in RISC-V and Mini ISA.
WIP: No caches, CSRs, etc.

10

Alternate Directions

TL-X (TL-Verilog)
● H/w modeling (w/

HLS) deserves its
own language

● Abstraction as
context for details (if
details are needed)

Driven by: Designers

11

SystemC + HLS
● Integrate w/

C++-based
verification models

● Synthesize
algorithms to
gate-level RTL

● Tools optimize for
constraints

Driven by: EDA
Industry

Chisel, CλaSH, etc.
● Leverage s/w

techniques to
construct h/w

Driven by: Academia

TL-Verilog because...

For IP, like CPUs
● Concise
● Explicit
● But flexible

For learning
● TL-Verilog constructs ⇔ logic design concepts
● Simple to learn and code
● You can do more - two courses in 3 hrs.
● It has a free online IDE -- Makerchip (also edaplayground.com)
● To get you ahead of the curve

12

1-to-7 cycles
TL-Verilog

1-cyc 7-cyc
SystemVerilog

Code Size

...

Simplifying
Stuff in Verilog you’ll never need again:
● reg vs. wire vs. logic vs. bit
● blocking vs. non-blocking
● packed vs. unpacked
● generate blocks
● loops
● always blocks
● sensitivity lists

Stuff you need to learn
● pipelines
● hierarchy
● state
● transactions

13

Need
Not Crucial
Obsolete

Verilog Spec TOC

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
14

Makerchip

15

http://www.makerchip.com

1. On desktop machine, in modern web
browser (not IE), go to: makerchip.com

2. Click “IDE”.

Lab: Makerchip Platform

16

Reproduce this screenshot:
1. Open “Tutorials”

“Validity Tutorial”.
2. In tutorial, click

3. Split panes () and
move tabs.

4. Zoom/pan in Diagram
w/ mouse wheel and
drag.

5. Click $bb_sq to
highlight.

Load Pythagorean Example

http://makerchip.com

A) Inverter
1. Open “Examples” (under

“Tutorials”).
2. Load “Default Template”.
3. Make an inverter.

In place of:

type:

(Preserve 3-space indentation)

4. Compile (“E” menu) & Explore

Lab: Combinational Logic

17

 $out = ! $in1;

Note:
1. There was no need to declare $out

and $in1 (unlike Verilog).
2. There was no need to assign $in1.

Random stimulus is provided, and
a warning is produced.

B) Other logic
1. Make a 2-input gate.

(Boolean operators: (&&, ||, ^))

 //...

Lab: Vectors

$out[4:0] creates a “vector” of 5 bits.
Arithmetic operators operate on vectors as binary numbers.

18

1. Try:
$out[4:0] = $in1[3:0] + $in2[3:0];
(Cut-n-paste)

2. View Waveform (values are in hexadecimal and
addition can overflow)

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
19

Sequential Logic - Fibonacci Series

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

20

+ 235 1 1

$num

Fibonacci Series - Reset

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

$num1

+

$reset

21(makerchip.com/sandbox/0/0wjhLP)

$num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

>>1$num >>2$num

Lab: Counter
Lab:
1. Design a free-running

counter:

2. Compile and explore.

$num1

+

$reset

22

Reference Example: Fibonacci Sequence
(1, 1, 2, 3, 5, 8, ...)

 $num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

(makerchip.com/sandbox/0/0wjhLP)

3-space indentation
(no tabs)

$cnt
0

+

$reset

1

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
23

Pipeline

24

Pretzel = Transaction

Stage 1:
Roll

Stage 2:
Twist

Stage 3:
Salt

Stage 4:
Bake

A Simple Pipeline

a

b
c

c = sqrt(a^2 + b^2)

Pythagoras's Theorem circuit:

Too much for one cycle. Distribute over three cycles.

$aa_sq[31:0] = $aa * $aa;
$bb_sq[31:0] = $bb * $bb;
$cc_sq[31:0] = $aa_sq + $bb_sq;
$cc[31:0] = sqrt($cc_sq);

+
^2

^2

sqrt
c

a

b

flip-flop

^2

^2

sqrt
c

a

b

+

Timing-Abstraction

|calc

2 3Stage: 1

+
^2

^2
sqrt

c
a

b

➔ Flip-flops and
staged signals are
implied from
context.

26

Timing-abstract:

+
^2

^2
sqrt c

a

b

RTL:

TL-Verilog vs. SystemVerilog

27

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

System
Verilog

|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

TL-Verilog
~3.5x

|calc

+

^2

^2

sqrt
c

a

b

Retiming -- Easy and Safe
|calc
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

|calc
 @0
 $aa_sq[31:0] = $aa * $aa;
 @1
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @4
 $cc[31:0] = sqrt($cc_sq);

$aa_sq
$cc_sq

|calc

2 31

+
^2

$bb_sq sqrt $cc
$aa

$bb

40

^2

==

Staging is a physical attribute. No impact to behavior.

$aa_sq
$cc_sq

|calc

2 31

+
^2

$bb_sq sqrt
$cc

$aa

$bb

40

^2

Retiming in SystemVerilog

29

// Calc Pipeline
logic [31:0] a_C1;
logic [31:0] b_C1;
logic [31:0] a_sq_C0,
 a_sq_C1,
 a_sq_C2;
logic [31:0] b_sq_C1,
 b_sq_C2;
logic [31:0] c_sq_C2,
 c_sq_C3,
 c_sq_C4;
logic [31:0] c_C3;
always_ff @(posedge clk) a_sq_C2 <= a_sq_C1;
always_ff @(posedge clk) b_sq_C2 <= b_sq_C1;
always_ff @(posedge clk) c_sq_C3 <= c_sq_C2;
always_ff @(posedge clk) c_sq_C4 <= c_sq_C3;
// Stage 1
assign a_sq_C1 = a_C1 * a_C1;
assign b_sq_C1 = b_C1 * b_C1;
// Stage 2
assign c_sq_C2 = a_sq_C2 + b_sq_C2;
// Stage 3
assign c_C3 = sqrt(c_sq_C3);

Very bug-prone!

Fibonacci Series Pipeline

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

|fib
 @1
 $num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

$num

|fib

2 31

1

+

$reset

30
(makerchip.com/sandbox/0/0lOhXW)

Parameterized Pipelines

31

@fetchStage
 <fetch-logic>
@decodeStage
 <decode-logic>
@executeStage
 <execute-logic>

3-Stage
fetchStage = 1
decStage = 2
exeStage = 3

1-Stage
fetchStage = 1
decStage = 1
exeStage = 1

fetch decode execute

fetch decode execute

In WARP-V:

Not Practical with RTL!

WARP-V Parameterized Staging

32

A
L
U

IMem
Rd DMem Rd/Wr

RF
Rd

+

pend. replay PC

reg. byp.

RF
Wr

ld rtn

br. target

ld data

+

Dec

DMem Rd/Wr

P
C

p
e
n
d

+1

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
33

Validity

|calc
 @1
 $valid = ...;
 ?$valid
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);

Validity provides:
● Easier debug
● Cleaner design
● Better error checking
● Automated clock gating

34

Clock Gating

● Motivation:
○ Clock signals are distributed to EVERY flip-flop.
○ Clocks toggle twice per cycle.
○ This consumes power.

● Clock gating avoids toggling clock signals.
● FPGAs generally use very coarse clock gating + clock enables.
● TL-Verilog can produce fine-grained gating or enables.

35

+
^2

^2
sqrt

c
a

b

Lab 3: Errors in WARP-V

1) See if you can produce this:

which ORs together various error conditions
that can occur on an instruction. (OR is “||”)

2) Add a ?$valid condition.
(<ctrl>-”]” - indent)

36

(makerchip.com/sandbox/0/0xGhJP)

Error conditions
(leave unassigned)
ORs

For reference:\TLV
 |calc
 @0
 $aa_sq[31:0] = $aa * $aa;
 @1
 $bb_sq[31:0] = $bb * $bb;

Indentation is 3 spaces

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
37

|inst
 ?$op_a_valid
 @4
 $op_a[63:0] =
 ($op_a_src == IMM) ? $imm_data :
 ($op_a_src == BYP) ? >>1$rslt :
 ($op_a_src == REG) ? >>2$reg_data :
 ($op_a_src == MEM) ? /top|mem>>5$mem_data :
 64'b0;

WARP-V Operand Mux
$reg_data

$rslt

$mem_data

$op_a

|inst

|mem
3

5 6 7 84

2

9

A
L
U

38

4 5

RF$imm_data

WARP-V Operand Mux Retimed

|inst
 ?$op_a_valid
 @3
 $op_a[63:0] =
 ($op_a_src == IMM) ? $imm_data :
 ($op_a_src == BYP) ? >>1$rslt :
 ($op_a_src == REG) ? >>2$reg_data :
 ($op_a_src == MEM) ? /top|mem>>5$mem_data :
 64'b0;

39

$reg_data

$rslt

$imm_data

$mem_data

$op_a

|inst

|mem
3 4

5 6 7

5

84

2

9

RF
A
L
U

Register Bypass

40

A
L
U

1-Cycle 3-Cycle

RFRF

No bypass (ISA spec):
$reg1_value[M4_WORD_RANGE] =
 /cpu/regs[$reg]>>1$value;

A
L
U

Delay RF write.

Broken implementation!

Register Bypass

41

A
L
U

1-Cycle 3-Cycle

A
L
U

RFRF

Two bypass stages:
@4
 $reg1_value[M4_WORD_RANGE] =
 (>>1$valid && (>>1$dest_reg == $reg1)) ? >>1$rslt :
 (>>2$valid && (>>2$dest_reg == $reg1)) ? >>2$rslt :
 /regs[$reg1]>>3$value;

No bypass (ISA spec):
@3
 $reg1_value[M4_WORD_RANGE] =
 /cpu/regs[$reg]>>1$value;

32 2 3 4 5

Time-Division Multiplexing Example

42
Time ->

packets

packets

flits

Producer

Consumer

Time-Division Multiplexing Example

43

$packet_in

2 310 4

$flit $packet_out

Time-Division Multiplexing Example

44

Lab: Time-Division Multiplexing

45

1. Load “Examples”/“Webinar”/“TDM Lab”.
2. Fill in the TL-Verilog for $flit[3:0] = ...

3. $packet_out[15:0] = ...

$packet_in

2 310 4

$flit $packet_out

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
46

Hierarchy in TL-Verilog

47

Verilog has many constructs for
design hierarchy.
● modules
● packed arrays
● unpacked arrays
● for loops
● generate for loops

TL-Verilog provides
● /scope[7:0]

to generate appropriate Verilog.

Hierarchy -- Conway’s Game of Life

|default
 /yy[Y_SIZE-1:0]
 /xx[X_SIZE-1:0]
 @1
 // Sum left + me + right.
 $row_cnt[1:0] = ...;
 // Sum three $row_cnt's: above + mine + below.
 $cnt[3:0] = ...;

 // Init state.
 $init_alive[0:0] = *RW_rand_vect[...];

 $alive = $reset ? $init_alive :
 >>1$alive ? ($cnt >= 3 && $cnt <= 4) :
 ($cnt == 3);

48
(makerchip.com/sandbox/0/0Nkf06)

Interfaces in TL-Verilog (or lack thereof)

49

● Verilog modules have explicit
interfaces.

● Cross-module references are
restrictive and discouraged.

● TL-Verilog scope requires no
interfaces.

● Signals are referenced where they are
produced.

Eg:
$core2_sig[1:0] =
 /core[2]|my_pipe/trans>>1$my_sig[3:2];

Accumulate:
$any_valid = | /slice[*]$valid;

TL-Verilog

Verilog

⇒ No interface parameterization for TL-Verilog IP!

Hierarchy in WARP-V

50

Decode: Extracting src reg fields

Execute: Referencing register values

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
51

WARP-V Configuration

“Swiss Cheese” CPU

Config

BrPred = ...
ISA = ...
...

Params

WordWidth = ...
MemSize = …
...

Staging

Fetch = 1
Decode = 2
Execute = 3
...

BPs

Dec Exe WB

TL-Verilog

ISAs

M4 (+Perl)

● Native elaboration features
are TBD for TL-Verilog.

● Macro preprocessing w/ M4
provides a workable solution
in the meantime:
○ Parameterization (incl.

staging)
○ Library inclusion
○ Modularity & reuse
○ Configuration

(component selection)
○ Code construction

“Swiss-Cheese” Design

53

ISA-Specific:

@decode
 /src[*]
 $reg[5:0] = (#src == 1)
 ? $instr[19:15]
 : $instr[24:20];
@execute
 $add_rslt[31:0] =
 /src[1]$reg_value +
 /src[2]$reg_value;

@decode @execute@rf_rd

// Read each src operand from reg file.
@rf_rd // stage
 /src[2:1] // for each src operand
 $reg_value[M4_WORD_RANGE] =
 |cpu/rf[$reg]$Value; // RF rd

reg
reg

regrf

BrPre
d

$add_
rslt

/src
BrPre

d$reg $reg_value

● Single ISA-specific instantiation fills
multiple holes

● “Lexically re-entrant” scopes

Parameterized Register Bypass

1, 2, 3, or 4 cycles (based on M4_REG_BYPASS_STAGES)

(Could be a loop)

54

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
55

Verilog within TL-Verilog
Verilog functions, macros, modules, assertions, and any other
Verilog code, can be used in \TLV context.

Module:

Etc.:

56

0 1 0 1

FI
FO

|inpipe |fifo_out

TL-Verilog within Verilog/SystemVerilog

$data[31:0]

|pipe

3 41 20 5

data_in[31:0] data_out[31:0]

$validvalid
clk

module my_design(...);

57

File Structure

\TLV_version 1b tl-x.org
\SV
module my_design (
 input clk,
 input valid,
 input [31:0] data_in,
 output [31:0] data_out
);
\TLV
 ...

\SV
endmodule

Interfacing with Verilog/SystemVerilog

\TLV_version 1b tl-x.org
\SV
module my_design (
 input clk,
 input valid,
 input [31:0] data_in,
 output [31:0] data_out
);
\TLV
 |pipe
 @0
! $valid = *valid;
 ?$valid
! $data[31:0] = *data_in;
 // Logic
 // There is none.
 @5
! *data_out = $data;
\SV
endmodule

Remaining Logic

\TLV_version 1b tl-x.org
\SV
module my_design (
 input clk,
 input valid,
 input [31:0] data_in,
 output [31:0] data_out
);
\TLV
 |pipe
 @0
! $valid = *valid;
 ?$valid
! $data[31:0] = *data_in;
 // Logic
 // There is none.
 @5
! *data_out = $data;
\SV
endmodule

60

Makerchip File Structure

[Show in Makerchip]

61

Checkpoint

You can now develop anything w/ TL-Verilog!
For free:
● Open-source: TLV-Comp
● Commercial: SandPiper™ w/ Starter License

...but it gets even better (on Makerchip or w/ educational or
paid license).

62

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
63

State
Low-level view of state:
● State is: Flip-flops and memories, aka “state elements”
● State of the machine = values held in state elements.
● State is modified by combinational logic each cycle to get to new state.

High-level view of state:
State is:
● In a CPU: memory, reg file, CSRs
● In a game of chess: the board, the next player ID

State is modified by: transactions
Transactions are:
● CPU: instructions
● Chess: a move

In-flight transactions are also state 64

Save/Restore
Important test/debug capability.
What do we save? -- State
Low-level:
● Every flip-flop (SCAN) & array

High-level:
● High-level state (arrays & regs)

+ in-flight transactions
Quiescing:
● Stop issuing transactions
● In-flight transactions => 0 (?$valid => 0)
● Save high-level state only.

Can capture periodic checkpoints and reproduce bugs in simulation.
65

SCAN Chain

Categorizing Flip-Flops

66

State Staging

Example $RegValue[63:0] $instr_immediate[6:0]

Nature Persistent Transient

Value under ?$valid == 0 Retained DONT_CARE

Reset Fixed value DONT_CARE (?$valid == 0
suggested)

Quiescent Value Retained DONT_CARE (?$valid == 0)

● Valuable distinction for reset and debug.

State - Distance Accumulator

+
^2

^2
sqrt

$aa

$bb

67

0
+

$cc

$TotDist

+
^2

^2
sqrt

$aa

$bb

0
+

$cc

$TotDist

+
^2

^2
sqrt

$aa

$bb

0
+

$cc

$TotDist
$TotDist

|calc
 ?$valid
 @1
 $aa_sq[31:0] = $aa * $aa;
 $bb_sq[31:0] = $bb * $bb;
 @2
 $cc_sq[31:0] = $aa_sq + $bb_sq;
 @3
 $cc[31:0] = sqrt($cc_sq);
 @4
 $TotDist[31:0] <= $reset ? 0 : $TotDist + $cc;

State - Distance Accumulator
|calc

2 3Stage: 1

+
^2

^2
sqrt

$aa

$bb

68

4

0

+
$TotDist

$valid

$cc <<1$TotDist

Shorthand for: <<1$TotDist[31:0] =

$TotDist Waveform

69

State in WARP-V

70

Fibonacci Series - Reset

Next value is sum of previous two: 1, 1, 2, 3, 5, 8, 13, ...

$num1

+

$reset

71(makerchip.com/sandbox/0/0wjhLP)

 $num[31:0] = $reset ? 1 : (>>1$num + >>2$num);

>>1$num

>>2$num
1

+

$reset

$Num

>>1$Num

 $Num[31:0] <= $reset ? 1 : ($Num + >>1$Num);

<<1$Num

Lab: Counter as State
Lab:
1. Design a free-running

counter:

2. Compile and explore.

$Num

1

+

$reset

72

Reference Example: Fibonacci Sequence
(1, 1, 2, 3, 5, 8, ...)

 $Num[31:0] <= $reset ? 1 : ($Num + >>1$Num);

(makerchip.com/sandbox/0/0wjhLP)

3-space indentation
(no tabs)

$Cnt

0

+

$reset

1

>>1$Num

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
73

Transaction Flow

FIFO
Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<
Phase-based
B.P. Pipeline

74

- Flow constructed from pre-verified library components.
(~100 lines)

- Transaction logic added into this context.

Transaction Flow: Scenario

FIFO
Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<
Phase-based
B.P. Pipeline

75

Error rate too high. Require parity protection on FIFO and Ring.

2 lines of TL-Verilog vs. 100s of lines of RTL change (across files).

$parity = ^ {$data, $dest,
...};

$parity_error =
 $parity != ^ {$data, $dest};

Demo in Makerchip

[Demo Flow Tutorial in Makerchip]

76

Transaction Flow

FIFO

Free-Flow
Pipeline

Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
Pipeline

Phase-based
B.P. Pipeline

Trans. Flow:

Trans. Logic:

Ring

>

<

comb

comb comb
comb

comb comb

comb

77

Phase-based
B.P. Pipeline

Transaction Flow

FIFO

Free-Flow
Pipeline

Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<

comb

comb comb
comb

comb comb

comb

78

Phase-based
B.P. Pipeline

Transaction Flow: Retiming

FIFO

Free-Flow
Pipeline

Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<

comb

comb comb
comb

comb comb

comb

79

Phase-based
B.P. Pipeline

Transaction Flow: Retiming

FIFO

Free-Flow
Pipeline

Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<

comb

comb comb
comb

comb comb

comb

80

● Example: Back-pressured pipeline

Bold wires carry transactions, and are referenced as $ANY.

● $ANY is a wildcard rule. If a pipesignal is needed that is not available, it can be produced by a
$ANY expression.

|stage1 |stage3|stage2

|stage2
 @0
 $ANY = >>1$recirc ? >>1$ANY : /top|stage1>>1$ANY;

Transaction Flow: Mechanism -- $ANY

81

Back-Pressured Pipeline

82
(makerchip.com/sandbox/0/0Elh3R)

“Lexical Re-entrance” enables insertion of logic into flow.

● Open “Example”/”Backpressured Pipeline Macro”/”Backpressured
Pythagorean Calculation”

● Modify to match above.
● Find $cc_sq in Diagram and highlight its inputs (<Ctrl>-click for

multiple).

Lab: Back-Pressured Pythagorean

83

$aa_sq
$cc_sq

back-pressured pipeline

2 31

+
^2

$bb_sq sqrt
$cc

$aa

$bb

4 5

^2

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
84

Verification Methodology

No proposed changes to verification methodology today,
but potential for tomorrow:
● Timing-abstract and transaction-aware assertions/checkers/coverage,

resilient to logic retiming
● Verify transaction and flow separately

○ Transaction: Dummy flow
○ Flow: Dummy transaction

● Synthesizable testbench

85

Partial-Products Multiply

Checker Example

FIFO
Stall
Pipeline

Q
U

E
U

E

A
R
B

Free-Flow
PipelineRing

>

<
Phase-based
B.P. Pipeline

86

Output transactions must be
ordered w.r.t. input.

(makerchip.com/sandbox/0/0RghvD)

● Can be difficult to reconcile which transaction is coming out.
● Checker

○ count per dest at input; include count in transaction
○ count per source at output (maybe $src isn’t available

in H/W -- no problem)
○ compare counts

+1+1+1+1
+1+1+1+1

Agenda
● RISC-V Overview
● IP Design Methodology
● Design Concepts using TL-Verilog in Makerchip.com

○ Combinational Logic
○ Sequential Logic
○ Pipelines
○ Validity
○ Pipeline Interactions
○ Hierarchy
○ Elaboration
○ Interfacing with Verilog/SystemVerilog
○ State
○ Transactions
○ Verification

● Summary & Certification Challenge
87

Implications
Abstract context:
● Transactions & Transaction Flow
● State
● Validity

Help to:
● Organize design
● Reason about design
● Visualize design (more to come)
● Safely modify design

Separation of concerns
● Behavior from implementation
● State flops from staging flops
● Transaction flow logic from transaction logic

88

Certification Challenge

89

16

?

Now it’s time to show your skills.
You’ll create a circuit to compute the unknown distance.

leg

hyp hyp

hyp = sqrt(leg2 * 2)

leg

● Find “Webinar Certification Challenge” in “Examples” and load.
● Then be sure your project has been cloned and bookmarked.

Certification Challenge Diagram

90

$leg[15:0] = >>???$valid ? >>???$hyp : 16’d16; // 16, then prev $hyp.
$hyp_sq[32:0] = ($leg ** 2) * 2; // Pythagorean thm w/ leg1 == leg2.
$hyp[15:0] = sqrt($hyp_sq); // "

hyp = sqrt(leg2 * 2)

Certification Waveform

91

Calculate w/ 2-cycle latency.
Calculation valid only when $valid.

Certification Submission

● Find the unknown distance in the log (in decimal vs.
hexadecimal in waveform).

● Submit your answer (distance) and course feedback to:
kunalpghosh@gmail.com.

92

 Live webinar only

mailto:kunalpghosh@gmail.com

Parting Thoughts
Change is a community effort.
Contact me (steve.hoover@redwoodeda.com) about:
● Interest in WARP-V and other open-source development.
● Projects (incl. Google Summer of Code).
● Internship/co-op in Massachusetts (exceptional resumes only).
● Interest in TL-X.org (language standard).
● Pilot program and SandPiper incentives (mention course).
● Questions, thoughts, or just a kind word.

Help me spread the word:
● Show your professors/colleagues.
● Follow me on LinkedIn/Twitter (@RedwoodEDA).
● Share Makerchip on social media (via “Social” menu).

93

mailto:steve.hoover@redwoodeda.com

